Electronic Design

From Concept To Reality

Electronic Design

From Concept To Reality
Electronic Design – From Concept to Reality, 4th Electronic edition

Electronic Design – From Concept to Reality
By Martin S. Roden, Gordon L. Carpenter and William R. Wieserman
4th Electronic edition

This excellent book gives engineering students and practicing professionals of the 21st century the necessary tools to analyze and design efficient electronic circuits and systems. It includes many circuit examples which are now available in TINA by a click of the mouse from the electronic edition of the book published by DesignSoft.

TABLE OF CONTENTS

Chapter 1: BASIC CONCEPTS

Chapter 2: IDEAL OPERATIONAL AMPLIFIERS

Chapter 3: SEMICONDUCTOR DIODE CIRCUIT ANALYSIS

Chapter 4: BIPOLAR JUNCTION TRANSISTOR CIRCUITS

Chapter 5: BIPOLAR JUNCTION TRANSISTOR AMPLIFIERS

Chapter 6: FIELD-EFFECT TRANSISTOR AMPLIFIERS

Chapter 7: BIAS STABILITY OF TRANSISTOR AMPLIFIERS

Chapter 8: POWER AMPLIFIERS AND POWER SUPPLIES

Chapter 9: PRACTICAL OPERATIONAL AMPLIFIERS

Chapter 10: FREQUENCY BEHAVIOR OF TRANSISTOR AMPLIFIERS

Chapter 11: FEEDBACK AND STABILITY

Chapter 12: ACTIVE FILTERS

Chapter 13: QUASI-LINEAR CIRCUITS

Chapter 14: PULSED WAVEFORMS AND TIMING CIRCUITS

Chapter 15: DIGITAL LOGIC FAMILIES

Chapter 16: DIGITAL INTEGRATED CIRCUITS

CHAPTER 1 – BASIC CONCEPTS
1.0 Introduction
1.1 History, 1
1.2 Solid State Circuit Models, 3
1.3 Linear and Nonlinear Circuit Elements, 4
1.4 Analog vs. Digital Signals, 6
1.5 Dependent Sources, 7
1.6 Frequency Effects, 8
1.7 Analysis and Design, 10
1.7.1 Comparison of Design and Analysis, 10
1.7.2 Origin of Design Requirements, 10
1.7.3 What Do “Open-Ended” and “Trade Off” Mean?, 11
1.8 Computer Simulations, 13
1.9 Components of the Design Process, 14
1.9.1 Principles of Design, 15
1.9.2 Problem Definition, 16
1.9.3 Subdividing the Problem, 17
1.9.4 Documentation, 17
1.9.5 The Schematic Diagram, 18
1.9.6 The Parts List, 18
1.9.7 Running Lists and Other Documentation, 19
1.9.8 Using Documents, 20
1.9.9 Design Checklist, 20
1.9.10 Prototyping the Circuit, 21
Summary, 23
CHAPTER 2 – IDEAL OPERATIONAL AMPLIFIERS
2.0 Introduction, 24
2.1 Ideal Op-Amps, 25
2.1.1 Dependent Sources, 25
2.1.2 Operational Amplifier Equivalent Circuit, 27
2.1.3 Analysis Method, 30
2.2 The Inverting Amplifier, 30
2.3 The Non-Inverting Amplifier, 33
2.4 Input Resistance of Op-Amp Circuits, 41
2.5 Combined Inverting and Non-Inverting Inputs, 44
2.6 Design of Op-Amp Circuits, 46
2.7 Other Op-Amp Applications, 52
2.7.1 Negative Impedance Circuit, 52
2.7.2 Dependent-Current Generator, 53
2.7.3 Current-to-Voltage Converter, 54
2.7.4 Voltage-to-Current Converter, 55
2.7.5 Inverting Amplifier with Impedances, 56
2.7.6 Analog Computer Applications, 57
2.7.7 Non-Inverting Miller Integrator, 59
Summary, 60
Problems, 60
CHAPTER 3 – SEMICONDUCTOR DIODE CIRCUIT ANALYSIS
3.0 Introduction, 70
3.1 Theory of Semiconductors, 71
3.1.1 Conduction in Materials, 73
3.1.2 Conduction in Semiconductor Materials, 75
3.1.3 Crystalline Structure, 76
3.1.4 Generation and Recombination of Electrons and Holes, 78
3.1.5 Doped Semiconductors, 79
3.1.6 n-type Semiconductor, 80
3.1.7 p-type Semiconductor, 80
3.1.8 Carrier Concentrations, 80
3.1.9 Excess Carriers, 82
3.1.10 Recombination and Generation of Excess Carriers, 82
3.1.11 Transport of Electric Current, 83
3.1.12 Diffusion of Carriers, 83
3.1.13 Drift in an Electric Field, 84
3.2 Semiconductor Diodes, 87
3.2.1 Diode Construction, 89
3.2.2 Relationship Between Diode Current and Diode Voltage, 90
3.2.3 Diode Operation, 92
3.2.4 Temperature Effects, 93
3.2.5 Diode Equivalent Circuit Models, 95
3.2.6 Diode Circuit Analysis, 96
     Graphical Analysis, 96
     Piecewise-Linear Approximation, 99
3.2.7 Power Handling Capability, 103
3.2.8 Diode Capacitance, 104
3.3 Rectification, 104
3.3.1 Half-Wave Rectification, 105
3.3.2 Full-Wave Rectification, 106
3.3.3 Filtering, 107
3.3.4 Voltage Doubling Circuit, 110
3.4 Zener Diodes, 112
3.4.1 Zener Regulator, 113
3.4.2 Practical Zener Diodes and Percent Regulation, 117
3.5 Clippers and Clampers, 119
3.5.1 Clippers, 119
3.5.2 Clampers, 124
3.6 Op-Amp Circuits Containing Diodes, 127
3.7 Alternate Types of Diodes, 129
3.7.1 Schottky Diodes, 129
3.7.2 Light-Emitting Diodes (LED), 130
3.7.3 Photo Diodes, 131
3.8 Manufacturers’ Specifications, 132
Summary, 133
Problems, 134
CHAPTER 4 – BIPOLAR JUNCTION TRANSISTOR CIRCUITS
4.0 Introduction, 149
4.1 Structure of Bipolar Transistors, 149
4.2 Large-Signal BJT Model, 153
4.3 Derivation of Small-Signal ac Models, 154
4.4 Two-Port Small Signal ac Models, 156
4.5 Characteristic Curves, 158
4.6 Manufacturers’ Data Sheets for BJTs, 160
4.7 BJT Models for Computer Simulations, 161
4.8 Single-Stage Amplifier Configurations, 164
4.9 Biasing of Single-Stage Amplifiers, 166
4.10 Power Considerations, 169
4.10.1 Derivation of Power Equations, 170
4.11 Analysis and Design of Voltage Amplifier Bias Circuits, 172
4.11.1 Analysis Procedure, 172
4.11.2 Design Procedure, 177
4.11.3 Amplifier Power Sources, 183
4.11.4 Selection of Components, 184
4.12 Analysis and Design of Current Amplifier Bias Circuits, 184
4.13 Nonlinearities of Bipolar Junction Transistors188
4.14 On-Off Characteristics of BJT Circuits, 190
4.15 Integrated Circuit Fabrication, 192
4.15.1 Transistor and Diodes, 192
4.15.2 Resistors, 193
4.15.3 Capacitors, 193
4.15.4 Lateral Transistor, 194
Summary, 194
Problems, 195

CHAPTER 5 – BIPOLAR JUNCTION TRANSISTOR AMPLIFIERS
5.0 Introduction, 207
5.1 Common-Emitter Amplifier, 208
5.1.1 Gain Impedance Formula, 208
5.1.2 Input Resistance, Rin, 209
5.1.3 Current Gain, Ai, 210
5.1.4 Voltage Gain, Av, 210
5.1.5 Output Resistance, Ro, 211
5.2. Common-Emitter with Emitter Resistor (Emitter-Resistor Amplifier), 213
5.2.1 Input Resistance, Rin, 213
5.2.2 Current Gain, Ai, 215
5.2.3 Voltage Gain, Av, 215
5.2.4 Output Resistance, Ro, 215
5.3 Common-Collector (Emitter-Follower) Amplifier, 224
5.3.1 Input Resistance, Rin, 224
5.3.2 Current Gain, Ai, 225
5.3.3 Voltage Gain, Av, 225
5.3.4 Output Resistance, Ro, 226
5.4 Common-Base Amplifier, 230
5.4.1 Input Resistance, Rin, 231
5.4.2 Current Gain, Ai, 231
5.4.3 Voltage Gain, Av, 232
5.4.4 Output Resistance, Ro, 232
5.5 Transistor Amplifier Applications, 236
5.6 Phase Splitter, 237
5.7 Amplifier Coupling, 238
5.7.1 Capacitive Coupling, 238
5.7.2 Direct Coupling, 238
5.7.3 Transformer Coupling, 241
5.7.4 Optical Coupling, 243
5.8 Multistage Amplifier Analysis, 245
5.9 Cascode Configuration, 250
5.10 Current Sources and Active Loads, 252
5.10.1 A Simple Current Source, 252
5.10.2 Widlar Current Source, 253
5.10.3 Wilson Current Source, 256
5.10.4 Multiple Current Sources Using Current Mirrors, 258
Summary, 259
Problems, 262
CHAPTER 6 – FIELD-EFFECT TRANSISTOR AMPLIFIERS
6.0 Introduction, 277
6.1 Advantages and Disadvantages of FETs, 278 
6.2 Metal-Oxide Semiconductor FET (MOSFET), 279
6.2.1 Enhancement-Mode MOSFET Terminal Characteristics, 281
6.2.2 Depletion-Mode MOSFET, 284
6.2.3 Large-Signal Equivalent Circuit, 287
6.2.4 Small-Signal Model of MOSFET, 287
6.3 Junction Field-Effect Transistor (JFET), 290
6.3.1 JFET Gate-to-Source Voltage Variation, 293
6.3.2 JFET Transfer Characteristics, 293
6.3.3 JFET Small-Signal ac Model, 296
6.4 FET Amplifier Configurations and Biasing, 299
6.4.1 Discrete-Component MOSFET Biasing, 299
6.5 MOSFET Integrated Circuits, 302
6.5.1 Biasing of MOSFET Integrated Circuits, 303
6.5.2 Body Effect, 305
6.6 Comparison of MOSFET to JFET, 306
6.7 FET Models for Computer Simulations, 308
6.8 FET Amplifiers – Canonical Configurations, 312
6.9 FET Amplifier Analysis, 314
6.9.1 The CS (and Source Resistor) Amplifier, 314
6.9.2 The CG Amplifier, 319
6.9.3 The CD (SF) Amplifier, 323
6.10 FET Amplifier Design, 326
6.10.1 The CS Amplifier, 326
6.10.2 The CD Amplifier, 336
6.10.3 The SF Bootstrap Amplifier, 340
6.11 Other Devices, 343
6.11.1 Metal Semiconductor Barrier Junction Transistor, 343
6.11.2 VMOSFET, 344
6.10.3 Other MOS Devices, 344
Summary, 345
Problems, 346
CHAPTER 7 – BIAS STABILITY OF TRANSISTOR AMPLIFIERS
7.0 Introduction, 358
7.1 Types of Biasing, 358
7.1.1 Current Feedback Biasing, 359
7.1.2 Voltage and Current Biasing, 360
7.2 Effects of Parameter Changes – Bias Stability, 362
7.2.1 CE Configuration, 363
7.2.2 EF Configuration, 369
7.3 Diode Compensation, 372
7.4 Designing for BJT Amplifier Bias Stability, 374
7.5 FET Temperature Effects, 375
7.6 Reducing Temperature Variations, 377
Summary, 379
Problems, 380

CHAPTER 8 – POWER AMPLIFIERS AND POWER SUPPLIES

8.0 Introduction, 384
8.1 Classes of Amplifiers, 384
8.1.1 Class-A Operation, 385
8.1.2 Class-B Operation, 385
8.1.3 Class-AB Operation, 387
8.1.4 Class-C Operation, 388
8.2 Power Amplifier Circuits – Class-A Operation, 389
8.2.1 Inductively-Coupled Amplifier, 389
8.2.2 Transformer-Coupled Power Amplifier, 391
8.3 Power Amplifier Circuits – Class-B Operation, 395
8.3.1 Complementary Symmetry Class-B and -AB Power Amplifier, 395
8.3.2 Diode-Compensated Complementary-Symmetry Class-B Power Amps (CSDC), 398
8.3.3 Power Calculations for Class-B Push-Pull Amplifier, 401
8.4 Darlington Circuit, 408
8.5 Power Supply Using Power Transistors, 413
8.5.1 Power Supply Using Discrete Components, 413
8.5.2 Power Supply Using IC Regulator (Three-Terminal Regulator), 417
8.5.3 Power Supply Using Three-Terminal Adjustable Regulator, 421
8.5.4 Higher-Current Regulator, 422
8.6 Switching Regulators, 423
8.6.1 Efficiency of Switching Regulators, 425
Summary, 425
Problems, 426

CHAPTER 9 – PRACTICAL OPERATIONAL AMPLIFIERS
9.0 Introduction, 437
9.1 Differential Amplifiers, 438
9.1.1 dc Transfer Characteristics, 438
9.1.2 Common-Mode and Differential-Mode Gains, 439
9.1.3 Differential Amplifier with Constant Current Source, 442
9.1.4 Differential Amplifier with Single-Ended Input and Output, 445
9.2 Level Shifters, 451
9.3 The Typical Op-Amp, 454
9.3.1 Packaging, 455
9.3.2 Power Requirements, 456
9.3.3 The 741 Op-Amp, 456
     Bias Circuits, 457
     Short Circuit Protection, 457
     Input Stage, 458
     Intermediate Stage, 458
     Output Stage, 458
9.4 Manufacturers’ Specifications, 459
9.5 Practical Op-Amps, 459
9.5.1 Open-Loop Voltage Gain (G), 460
9.5.2 Modified Op-Amp Model, 461
9.5.3 Input Offset Voltage (Vio), 461
9.5.4 Input Bias Current (Ibias), 463
9.5.5 Common-Mode Rejection, 467
9.5.6 Power Supply Rejection Ratio, 467
9.5.7 Output Resistance, 468
9.6 Computer Simulation of Op-Amp Circuits, 471
9.7 Non-Inverting Amplifier, 473
9.7.1 Input and Output Resistance, 473
9.7.2 Voltage Gain, 475
9.7.3 Multiple-Input Amplifier, 478
9.8 Inverting Amplifier, 479
9.8.1 Input and Output Resistance, 479
9.8.2 Voltage Gain, 480
9.8.3 Multiple-Input Amplifiers, 482
9.9 Differential Summing, 485
9.10 Amplifiers with Balanced Inputs or Outputs, 489
9.11 Coupling Between Multiple Inputs, 492
9.12 Power Audio Op-Amps, 493
9.12.1 Bridge Power Op-Amp, 494
9.12.2 Intercom, 495
Summary, 496
Problems, 496
CHAPTER 10 – FREQUENCY BEHAVIOR OF TRANSISTOR AMPLIFIERS
10.0 Introduction, 509
10.1 Low-Frequency Response of Amplifiers, 513
10.1.1 Low-Frequency Response of Emitter-Resistor Amplifier, 513
10.1.2 Design for a Given Frequency Characteristic, 518
10.1.3 Low-Frequency Response of Common-Emitter Amplifier, 522
10.1.4 Low-Frequency Response of Common-Source Amplifier, 525
10.1.5 Low-Frequency Response of Common-Base Amplifier, 528
10.1.6 Low-Frequency Response of Emitter-Follower Amplifier, 529
10.1.7 Low-Frequency Response of Source-Follower Amplifier, 530
10.2 High-Frequency Transistor Models, 532
10.2.1 Miller Theorem, 533
10.2.2 High-Frequency BJT Model, 534
10.2.3 High-Frequency FET Model, 537
10.3 High-Frequency Response of Amplifiers, 538
10.3.1 High-Frequency Response of Common-Emitter Amplifier, 538
10.3.2 High-Frequency Response of Common-Source Amplifier, 542
10.3.3 High-Frequency Response of Common-Base Amplifier, 544
10.3.4 High-Frequency Response of Emitter-Follower Amplifier, 546
10.3.5 High-Frequency Response of Common-Drain(SF) Amplifier, 548
10.3.6 Cascode Amplifiers, 549
10.4 High-Frequency Amplifier Design, 550
10.5 Frequency Response of Op-Amp Circuits, 550
10.5.1 Open-Loop Op-Amp Response554
10.5.2 Phase Shift, 557
10.5.3 Slew Rate, 557
10.5.4 Designing Amplifiers Using Multiple Op-Amps, 560
10.5.5 101 Amplifier, 567
Summary, 570
Problems, 571
CHAPTER 11 – FEEDBACK AND STABILITY
11.0 Introduction, 585
11.1 Feedback Amplifier Considerations, 586
11.2 Types of Feedback, 587
11.3 Feedback Amplifiers, 588
11.3.1 Current Feedback – Voltage Subtraction for Discrete Amplifiers, 588
11.3.2 Voltage Feedback – Current Subtraction for a Discrete Amplifiers, 592
11.4 Multistage Feedback Amplifiers, 594
11.5 Feedback in Operational Amplifiers, 595
11.6 Stability of Feedback Amplifiers, 599
11.6.1 System Stability and Frequency Response, 601
11.6.2 Bode Plots and System Stability, 605
11.7 Frequency Response – Feedback Amplifier, 610
11.7.1 Single-Pole Amplifier, 610
11.7.2 Two-Pole Amplifier, 611
11.8 Design of a Three-Pole Amplifier With Lead Equalizer, 617
11.9 Phase-Lag Equalizer, 623
11.10 Effects of Capacitive Loading, 624
11.11 Oscillators, 625
11.11.1 The Colpitts and Hartley Oscillators, 625
11.11.2 The Wien Bridge Oscillator, 626
11.11.3 The Phase Shift Oscillator, 628
11.11.4 The Crystal Oscillator, 629
11.11.5 Touch-Tone Generator, 631
Summary, 631
Problems, 633
CHAPTER 12 – ACTIVE FILTERS
12.0 Introduction, 641
12.1 Integrators and Differentiators, 641
12.2 Active Network Design, 645
12.3 Active Filters, 648
12.3.1 Filter Properties and Classification, 649
12.3.2 First-Order Active Filters, 655
12.4 Single Amplifier – General Type, 666
12.5 Classical Analog Filters, 668
12.5.1 Butterworth Filters, 669
12.5.2 Chebyshev Filters, 672
12.6 Transformations, 674
12.6.1 Low-Pass to High-Pass Transformation, 674
12.6.2 Low-Pass to Band-Pass Transformation, 675
12.7 Design of Butterworth and Chebyshev Filters, 676
12.7.1 Low-Pass Filter Design, 677
12.7.2 Filter Order, 677
12.7.3 Parameter Scale Factor, 680
12.7.4 High-Pass Filter, 688
12.7.5 Band-Pass and Band-Stop Filter Design, 690
12.8 Integrated Circuit Filters, 694
12.8.1 Switched-Capacitor Filters, 695
12.8.2 Sixth-Order Switched-Capacitor Butterworth Low-Pass Filter, 697
12.9 Concluding Remarks, 699
Summary, 699
Problems, 700
CHAPTER 13 – QUASI-LINEAR CIRCUITS
13.0 Introduction, 706
13.1 Rectifiers, 706
13.2 Feedback Limiters, 717
13.3 Comparators, 731
13.4 Schmitt Triggers, 735
13.4.1 Schmitt Triggers with Limiters, 738
13.4.2 Integrated Circuit Schmitt Trigger, 744
13.5 Conversion Between Analog and Digital, 746
13.5.1 Digital-to-Analog Converter, 746
13.5.2 Analog-to-Digital Converter, 747
Summary, 751
Problems, 752

CHAPTER 14 – PULSED WAVEFORMS AND TIMING CIRCUITS
14.0 Introduction, 760
14.1 High-Pass RC Network, 762
14.1.1 Steady-State Response of High-Pass Network to Pulse Train, 766
14.2 Steady-State Response Low-Pass RC Network to Pulse Train, 771
14.3 Diodes, 777
14.3.1 Steady-State Response of Diode Circuit to Pulse Train, 777
14.4 Trigger Circuits, 781
14.4.1 Pulse Train Response, 782
14.5 The 555 Timer, 783
14.5.1 The Relaxation Oscillator, 784
14.5.2 The 555 as an Oscillator, 787
14.5.3 The 555 as a Monostable Circuit, 794
Summary, 796
Problems, 797

CHAPTER 15 – DIGITAL LOGIC FAMILIES
15.0 Introduction, 805
15.1 Basic Concepts of Digital Logic, 805
15.1.1 State Definitions – Positive and Negative Logic, 806
15.1.2 Time-Independent or Unclocked Logic, 807
15.1.3 Time-Dependent or Clocked Logic, 807
15.1.4 Elementary Logic Functions, 807
15.1.5 Boolean Algebra, 811
15.2 IC Construction and Packaging, 812
15.3 Practical Considerations in Digital Design, 814
15.4 Digital Circuit Characteristics of BJTs, 817
15.5 Bipolar Logic Families, 818
15.6 Transistor-Transistor Logic (TTL), 818
15.6.1 Open Collector Configurations, 820
15.6.2 Active Pull Up, 823
15.6.3 H-TTL and LP-TTL Gates, 828
15.6.4 Schottky TTL Gates, 828
15.6.5 Tri-State Gates, 829
15.6.6 Device Listings, 831
15.7 Emitter-Coupled Logic (ECL), 832
15.7.1 Device Listings, 834
15.8 Digital Circuit Characteristics of FETs, 835
15.8.1 The n-Channel Enhancement MOSFET, 835
15.8.2 The p-Channel Enhancement MOSFET, 835
15.9 FET Transistor Families, 836
15.9.1 n-Channel MOS, 836
15.9.2 p-Channel MOS, 836
15.10 Complementary MOS (CMOS), 837
15.10.1 CMOS Analog Switch, 841
15.10.2 CMOS Device Listings and Usage Rules, 843
15.11 Comparison of Logic Families, 845
Summary, 847
Problems, 848

CHAPTER 16 – DIGITAL INTEGRATED CIRCUITS
16.0 Introduction, 856
16.1 Decoders and Encoders, 857
16.1.1 Data Selector/Multiplexer, 860
16.1.2 Keyboard Encoders/Decoders, 862
16.1.3 Parity Generators/Checkers, 864
16.2 Drivers and Associated Systems, 864
16.2.1 The Liquid Crystal Display (LCD), 867
16.3 Flip-Flops, Latches, and Shift Registers, 868
16.3.1 Flip-Flops, 870
16.3.2 Latches and Memories, 875
16.3.3 Shift Registers, 877
16.4 Counters, 879
16.4.1 Frequency Measurement, 886
16.5 Clocks, 889
16.5.1 Voltage Controlled Oscillator, 889
16.6 Memories, 892
16.6.1 Serial Memories, 892
16.6.2 Random Access Memory (RAM), 895
16.6.3 ROMs and PROMs, 896
16.6.4 EPROMs, 897
16.7 More Complex Circuits, 899
16.7.1 Arithmetic Logic Unit (ALU), 899
16.7.2 Full Adders, 900
16.7.3 Look-Ahead Carry Generators, 900
16.7.4 Magnitude Comparator, 902
16.8 Programmable Array Logic (PAL), 903
16.9 Introduction to Problems, 903
16.9.1 Generating Random Numbers, 904
16.9.2 Measurement of Mechanical Angle of Velocity, 904
16.9.3 The Hall-Effect Switch, 905
16.9.4 Use of Timing Windows, 906
16.10 Concluding Remarks, 907
Problems, 908

APPENDICES
A. Micro-Cap and SPICE, 929
B. Standard Component Values, 944
C. Manufacturers’ Data Sheets, 946
D. Answer to Selected Problems , 985

    X
    Welcome to DesignSoft
    Lets chat if need any help finding the right product or need support.
    wpChatIcon