Félösszeadó áramkör szimulációja a TINACloud programban (Simulation of a Half Adder using TINACloud)

Félösszeadó áramkör szimulációja a TINACloud programban (Simulation of a Half Adder using TINACloud)
The rest of this blog is in Hungarian language.
You can find the English version here

Ebben az oktatóvideóban egy félösszeadó áramkör létrehozását és szimulációját mutatjuk be a TINACloud segítségével.

Félösszeadó (half adder) áramkörnek nevezzük azt a kapcsolást, amely két, egy bites bináris számot tud összeadni. A félösszeadónak két bemenete van, amit általában A-nak és B-nek neveznek, illetve két kimenete az Összeg (Sum)és az Átvitel (Carry).

Először létrehozzuk a félösszeadó kapcsolási rajzát.

Félösszeadó kapcsolási rajza
A Félösszeadót leíró logikai kifejezések: 

S= A XOR B ; C=A AND B,   ahol A és B a bemeneteket, S és C a Sum és Carry a kimeneteket jelölő logikai változók.

Ezek alapján az Sum (összeg) előállításához KIZÁRÓ-VAGY kaput míg az Carry (átvitel) előállításához ÉS kaput használunk.

­A Bemeneteket High-Low alternatív kapcsolók segítségével állítjuk elő.

A High-Low alternatív kapcsoló olyan speciális komponens, amely a kapcsoló állásától függően Logikai Magas (High) vagy Logikai Alacsony (Low) szintet szolgáltat.

A kapcsolón a szinteket H, illetve L jelöli.

Az áramkörünk tesztelése a DIG, Interaktív Digitális Analízis gomb megnyomásával történik.

Az Interaktív teszt során az alacsony logikai szintet kék, a magas logikai szintet piros színű markerek jelzik a csatlakozási pontokon.

A kapcsolók állítgatásával megvizsgáljuk az összes lehetséges bemeneti kombinációt.

Ezt követően az alternatív kapcsolókat egy-egy Digitális jelgenerátorral helyettesítjük, majd  a Digitális Analízis segítségével teszteljük áramkörünket .

Az összes jelkombináció generálásához 1s időtartamon először beállítjuk a PS1 Digitális Jelgenerátor értékét magas (H) logikai szintre 0.2s és 0.6s között.

Ezt követően a PS2 Digitális Jelgenerátor értékét állítjuk be 0.4s és 0.8s között magas (H) értékűre.

A diagram felrajzolásánál lehetőség van a sorrendiség meghatározására is a diagramon. Ehhez a nevek után egy kettőspontot kell tennünk, majd a kívánt sorszámot feltüntetni.

A Digitális Analízis futtatását, melynek idejét 1 s-ra állítjuk be, az Analízis menüből érhetjük el.

Amint az várható volt, a kapott diagramban minden jel külön, és a megadott sorrenben szerepel.

Az eredmény összevethető, és megegyezik a képernyőn látható Félösszeadó igazságtáblázattal.

Félösszeadó szimulációját bemutató diagram
Félösszeadó igazságtáblázat

Nézze meg videónkat, mely ide kattintva érhető el.

A következő weboldalakon érhet el minket:

www.tina.com

www.tinacloud.com

Youtube elérhetőségünk: https://www.youtube.com/user/TinaDesignSuite

RLC rezgőkör létrehozása és szimulációja a TINACloud programban (Creating and simulating an RLC resonator circuit using TINACloud)

RLC rezgőkör létrehozása és szimulációja a TINACloud programban (Creating and simulating an RLC resonator circuit using TINACloud)
The rest of this blog is in Hungarian language.
You can find the English version here:

Creating and simulating an RLC resonator circuit using TINACloud

Ebben az oktatóvideóban egy RLC rezgőkör létrehozását és szimulációját mutatjuk be a TINACloud program segítségével. A vizsgált soros RLC rezgőkör egy sorba kapcsolt ellenállásból (R), Tekercsből (L) és egy kondenzátorból (C) álló elektromos áramkör.

Először bemutatjuk az áramkör létrehozásának lépéseit, majd megmutatjuk, hogy hogyan lehet az egyes alkatrészek paramétereit, értékeit beállítani.

Ezt követően pedig teszteljük az áramkörünket Tranziens analízissel.

Tranziens analízis végrehajtása -mint a legtöbb áramkörszimulátor programban- közelítő numerikus módszerek segítségével történik.

A TINACloud programban ún. Szimbolikus analízisre is van lehetőség, amely képlet formájú, pontos, analitikus formulák segítségével adja meg az eredményt. Fontos azonban tudnunk, hogy ez csak lineáris áramkörök esetén lehetséges.

A számítások pontosságának növelését többféle módon is el lehet érni. Mi most az egyik, legegyszerűbb módját választjuk ennek, ami a következő.

A TINACloudban, az offline TINA-hoz hasonlóan, a szimulációs eredmények (diagramok) beilleszthetőek a szerkesztési felületre, így az áramköri rajz és az áramkör analízis eredményei együtt tárolhatók.

Bemutatjuk hogyan lehet elhelyezni a tranziens időfüggvény diagramot a szerkesztési felületen a kapcsolási rajz mellett.

Az áramkör vizsgálatát AC Analízissel folytatjuk

Ehhez az Analízis menüpontra kattintunk, kiválasztjuk az AC Analízist, majd az AC Transzfer Karakterisztikát

Az „AC Transzfer Analízis futtatása” dialógusablakban a Pontok száma mezőbe 500-at írunk, hogy részletesebb, pontosabb diagramot kapjunk.

A program 5 diagramot generál, amelyek a diagram ablak alján található fülekre kattintva jeleníthetők meg. A generált diagramok: Amplitúdó-, Fázis-, Nyquist-, Csoportfuttatási Idő (Group Delay)- és Bode-diagramok. 

Ezt követően az AC Bode diagramot is hozzáadjuk a kapcsolási rajzhoz.

Végül a Szimbolikus Analízis segítségével létrehozzuk  az AC Transzfer Karakterisztikát leíró képletet és elhelyezzük a kapcsolási rajzon.

Befejezésül a Szöveg ikon segítségével hozzáadjuk a  Soros RLC rezgőkör címet  az áramköri rajzhoz.

Nézze meg videónkat, mely ide kattintva érhető el.

A következő weboldalakon érhet el minket:

www.tina.com

www.tinacloud.com

Youtube elérhetőségünk: https://www.youtube.com/user/TinaDesignSuite