Creating two-sided PCBs in TINA, part 2: TINA PCB Design Flow

Creating two-sided PCBs in TINA, part 2: TINA PCB Design Flow

In this tutorial video

we will demonstrate the PCB design for the circuit we prepared in our previous video: Creating two-sided PCBs in TINA, part 1: Preparing Schematics for PCB Design.

The circuit is also available in the latest version of TINA as  ADC.TSC in the Examples\PCB\ADC folder.

TINA PCB Design Flow
Creating two-sided PCBs in TINA, part 2:

Watch our tutorial video to see how  to use the PCB design for the circuit we prepared in our previous video: Creating two-sided PCBs in TINA, part 1: Preparing Schematics for PCB Design.

Download the FREE trial demo of TINA Design Suite and get:

  1. One year free access to TINACloud (the cloud-based, multi-language, installation-free online version of TINA now running in your browser anywhere in the world.)
  2. An immediate 20% discount from the offline version of TINA
  3. Free license for your second computer, laptop etc.
Click here to download the FREE trial demo of TINA

 

You can also find below the script of the video:
 Creating two-sided PCBs in TINA, part 2: TINA PCB Design Flow

In this tutorial we will demonstrate the PCB design for the circuit we prepared in our previous video:  Creating two-sided PCBs in TINA, part 1: Preparing Schematics for PCB Design

1) Placement of components

Start TINA and open the circuit prepared in the previous video

The circuit is also available in the latest version of TINA as ADC.TSC in the Examples\PCB\ADC folder

Click the PCB Design icon

The PCB Design dialog appears

Note that the Autoplacement checkbox is set

Press the OK button

The PCB designer appears with automatically placed parts on the board.

However the automatic placement is never perfect.

Let’s reposition the parts according to our requirements.

Click the Select/Move components/tracks button

then click on U1 and drag aside

Next select the Connectors

As they turn white, rotate them clockwise

Drag them close to the edge of the board

Now position the remaining parts according to this picture.

Note that some of the parts should be rotated.

Finally, change the size of the board

Click the Board outline button,

then click on the workspace by holding down the Right-mouse button

Select Cancel

Next double-click on the workspace

In the Shape properties window

Change the Rectangle height into 1500 mil

then click OK

2. Preparation for routing

Now, we check the design parameters before routing

Click Options

System settings

The units are in mils which were defined in TINA Schematic Editor View/Options

Click OK to close the System settings window

Click Options

Layer settings

We design double-sided board with components on the top.
Copper routing will be applied on top and bottom sides too.

Close the Layer editor Window

Next, click Options

Autorouter settings

We will use both manual and automatic routing, for our circuit.

Here we can give direction preferences on a scale of 1 to 9 for autorouting. Leave them now default.
Close the Autorouter settings window

Next, click Options

Design parameters

Now, set ‘Pad to pad’ value to 6

This assures that our SON12_3x3_0.5_TP (U2 ) package will not violate the design rules

Click OK

3. Routing the design

The PCB Editor offers several modes to assist manual and automatic routing

Click the Mode 2 icon button on the toolbar,

then click to the connection points at the ends of the rubber line

Manual routing is practical for small boards, but now we shall use the autorouter

Click Tools

Autoroute board

After the autorouting we connect manually the unconnected nets then revise connections and cleanup design


Filling both sides with copper pour we will create a ground plane and reduce the amount of etching liquid

Click the Copper pour area icon,

then by holding down the left-mouse button select the area you want to fill

Release the selection by clicking the left-mouse button at the end point

We can assign the GND net to pour areas

Click the Copper pour area icon, then click anywhere on the workspace and select Cancel

Next double-click the copper shape and

in the Assigned net field of the Shape properties window select GND

then click OK

To avoid the board edge, we set ‘Board to copper pour’ to 40 mils
Click Options

Design parameters

Enter 40 in the Board to copper pour field,

then click OK

4. Final touches: texts and 3D view

Now we arrange component name texts on silkscreen and add some additional ones to identify the pins of the connectors

We will move U1 label which belongs to the Silkscreen Layer

Select Silscreen Top layer

Next, click the Select/Move components/tracks button

Click the U1 label, then drag it to the right place

You can rotate it while it is selected by using the Rotate right/Rotate left icon

Finally let’s see and test our design in a lifelike photo-realistic 3D view.

To generate the 3D model press the 3D View button on the toolbar

The lifelike 3D model of the circuit appears.

You can rotate the model by holding down the left-mouse button while moving the mouse or using the arrows on the keyboard.

You can Zoom In or Zoom Out by holding down the right-mouse button while moving the mouse

5. Design rule check (DRC) and making layer images

DRC process is very important step at the end of the design before we generate data files to the PCB manufacturer

Click Tools

DRC

Run DRC

As there is no error message, just click OK

If there is no DRC message then it is time to have our board made.
Typically this means creating gerber format files for a professional manufacturer

Click File

Export gerber file

Click Save

It is also very important to check gerber files once the design is completed.
Note that many free viewers are available like ViewMate, GC-Prevue…

6. Live 3D View

Let’s run Transient Analysis with 3D view

Press the TR button to run Transient Analysis

You can change the Voltage input

Double-click the Vin and enter 1.8 in the Voltage field of the Vin-Voltage Source window, then click OK